
Environmental Health Perspectives
Vol. 87, pp. 5-11, 1990

Managing Clinical Research Data: Software
Tools for Hypothesis Exploration
by C. F. Starmer* and M. A. Dietz*

Data representation, data file specification, and the communication of data between software systems
are playing increasingly important roles in clinical data management. This paper describes the concept
of a self-documenting file that contains annotations or comments that aid visual inspection of the data
file. We describe access of data from annotated files and illustrate data analysis with a few examples
derived from the UNIX operating environment. Use of annotated files provides the investigator with both
a useful representation of the primary data and a repository of comments that describe some of the context
surrounding data capture.

Introduction
The nature of the computational platform on which

experimentally derived data are managed and analyzed
can play an important role in the quality of a study. For
instance, the platform can provide no services to the
user, thus forcing a large manual and potentially error-
prone effort in data acquisition, preparation, manage-

ment, and analysis. On the other hand, the platform can
provide a wide variety of ancillary services, from basic
data handling and quality assessment to data subsetting
and value transformation to model building, parameter
estimation, hypothesis testing, and data visualization.
A long-term problem within the computer science com-
munity has been that of developing effective, easy-to-
use interfaces between the user and these ancillary ser-
vices. There have been two traditional approaches: a

static, compiled specification of the data management
process and an adaptive, interpretive specification of
the process.
The computational platform could facilitate matching

the needs of the investigator with the nature of his/her
investigation and the translation of these needs into
easily evoked actions. Our approach to research data
management follows the adaptive, interpretive para-
digm and is based on two observations: it is extremely
difficult to design a detailed data management and
analysis protocol prior to the onset of the investigation,
and the specification of data management actions such
as editing and analysis seems better suited to visual
specification (with icons and selection with a pointing
device such as a mouse) than to a particular command
language. We often find that as the project unfolds, new

*Duke Medical Center, Durham, NC 27710.
Address reprint requests to C. F. Starmer, P.O. Box 3181, Duke

Medical Center, Durham, NC 27710.

unexpected observations are made that influence the
outcome attributes to be monitored, their frequency,
and associated covariates. Furthermore, as initial hy-
potheses are tested, new or refined hypotheses may
develop. To try to match the evolutionary nature of an
investigation with computer-based analytical tools, we
have embarked on a program that emphasizes the ease
of adaptation, evolution, and specification of data-
manipulation protocols. This paper presents three main
ideas: data representation, data file specification, and
the interface between ifies and processes.

Questions arise when developing a data analysis pro-
cedure: Was the data collection protocol followed? Have
the data been properly coded? Is the record format cor-
rect? Have the proper subsets been identified? The an-
swers to some of these questions reside in documents
distinct from the data ifies, and in the heads of personnel
responsible for data preparation, data entry, and data
file management. Is it possible to make progress with
coordinating access to these various sources of infor-
mation by changing the way we traditionally view the
data capture-management-analysis process? Typically,
these processes are executed and managed in a rigid
and semiautonomous manner. That is, procedures are
designed for each part of a study that are then carried
out by different members of the investigative team.
Consequently, important procedural information used
for data capture might be deleted from primary data
files after initial use and thus be unavailable for sub-
sequent review. The rationale for pruning such data in
the setting of the economics of today's computers and
data storage devices is probably no longer valid.
We have been developing some guidelines and soft-

ware tools for research data management and data
analysis that focus on capturing and managing not only
the primary data but also some of the experimental
context surrounding data capture that was alluded to

STARMER AND DIETZ

previously. Our rationale is that it is simply unrealistic
to expect to be able to explicitly state each step in the
data management/analysis process correctly the first
time, i.e., to specify the experimental and data capture
protocols, data management protocols, and analytical
procedures in sufficient detail that the process is me-
chanical. Rather, we accept that this process, from ex-
periment to analysis, is evolutionary in nature and defies
precise specification. The efficiency of the analysis can
depend critically on allowing the primary investigator
the flexibility of navigating freely from tentative anal-
yses that raise questions about experimental protocol
to the raw primary data in order to investigate anom-
alies. If such navigation is permitted, then anything that
can aid the investigator with the visual review of pri-
mary data and results of analyses would be helpful. This
stepwise, incremental refinement or evolution of the
experimental and analytical procedures is becoming
more commonplace as we build more flexibility in the
data management systems. Access to inexpensive
highspeed processors and bulk storage have made this
approach both feasible and cost effective.

This paper focuses on three primary areas: data rep-
resentation, data file specification that incorporates pro-
tocol information into the primary files, and standards
of communication between files and data transforma-
tion/analysis procedures that facilitate reuse of analysis
tools. We also show how these issues have a direct im-
pact on the flexibility or plasticity of a data management
system.

Viewing an Experiment as an Object
We start by viewing the experiment as an object or

entity that consists of experimental- protocols, recorded
data, and analysis procedures. We view the entire ob-
ject as the subject of analysis, not just the recorded
response data. This viewpoint reflects the fact that the
recorded data includes both signals as well as noise, and
the noise can sometimes represent important hidden
signals reflecting protocol weaknesses or distortion in-
troduced by a data-capture instrument. Sometimes, this
hidden signal goes unrecognized until some preliminary
analyses have been completed. Thus, hypothesis testing
in such a setting frequently involves exploring a class
of alternate hypotheses. When results of preliminary
analyses introduce questions that reflect uncertainty
about protocols or instrumentation, it is useful to review
protocols, sources of signals, instrumentation, and po-
tential confounding factors, and to make adjustments
to and refinement of the region of hypothesis explora-
tion.
To facilitate user-directed refinement, we have cho-

sen to represent all aspects of the study including ex-
perimental protocols, data, and analysis output as AS-
CII records that comprise a data file (Fig. 1). This figure
shows a segment of a typical data file derived from the
study of interactions between a drug and a cell mem-
brane. Shown is the dictionary record that names the
variables stored in data records (record 1, leading char-

$event Ipeak Imnin t_min
!Propoxyphene study; 50 ,uM concentration 10/12/88b Recovery and
uptake

!protocols. Filter 0 5 0 x 100
!Follower gain = x2
!Tape 208. speed = 15 ips
!Sampling rate = 20 kHz, 2 channels, 600 points/frame
:train .25 Hz
407 1.3625 - .4 0.0011
408 1.2225 - 0.095 0.0009
409 1.245 - 0.05 0.0008
410 1.2075 - .4625 0.001
411 1.145 - 0.0525 0.0009
412 1.1775 - 0.05 0.0009
413 1.2 - 0.095 0.001
414 1.17 - 0.0625 0.0009
415 1.1575 - 0.0525 0.0008
:train .5 Hz
438 1.2475 - .17 0.001
439 1.1625 - 0.055 0.0008
440 1.05 - 0.045 0.0008
441 1.0025 - .24 0.001
442 1 - .325 0.0011
443 .985 - .135 0.0009
444 .9675 - .4225 0.0013
445 .955 - .1675 0.0009
446 .98 - .15 0.001
447 .945 - .1375 0.001
448 .9525 - .4225 0.0011
449 .945 - 0.05 0.0008
:train 1 Hz
469 1.21 - .19 0.0009
470 1 - .415 0.0012
471 .865 - .24 0.0009
472 .8275 - .1 0.001
473 .7825 - 0.0475 0.001
474 .795 - 0.0425 0.0009
475 .75 - .2275 0.001
476 .7425 - 0.0475 0.0009
477 .7375 - .2075 0.001
478 .78 - 0.0875 0.001
479 .7325 - .2925 0.001
:train 2 Hz
500 1.19 - .44 0.001
501 .9125 - 0.0325 0.0008
502 .7325 - 0.04 0.001
503 .64 - .3175 0.0011
504 .6125 - .3875 0.0013
505 .535 - 0.035 0.0008
506 .58 - 0.05 0.001
507 .515 - 0.0325 0.0007
508 .5175 - .13 0.0009
509 .52 - .32 0.001
510 .4975 - 0.0325 0.0007

FIGURE 1. An annotated file. The first record (line) is a dictionary
record (identified by $ in the first position) that identifies the four
columns of data as event, Ipeak, Imin and t_min. The next five
lines are comment records (identified by a ! in the first position)
that describe the experiment and other important information. The
next record initiated by the colon, :, indicates a frame of data defined
as the next nine records. This is followed by another frame identifier
and a group of data records. Each frame of data is identified by a
text string that can be used to extract the frame using the function,
select.

acter is a $) followed by comment (leading character is
a !) records that describe the type of experiment, date,
instrumentation settings and data tape identifier fol-
lowed by a frame identifier (leading character is a :) that

6

MANAGING RESEARCH DATA

states the protocol associated with the following data
records. Though the advantages of capturing and mak-
ing accessible these data are obvious to many, few have
explored ways to access and manipulate all these ele-
ments in a manner that eases the burden of interpreting
data and analysis results. By using an ASCII repre-
sentation of all characterizations of a study, the anno-
tation and data records can be readily printed and dis-
played with full screen editors, and they can perhaps
be manipulated by tools designed to perform simple data
extraction or data transformation tasks. With properly
designed data-manipulation tools, it should rarely be
necessary to write a program to explicitly display or
transform data. To facilitate the manipulation of these
experimental objects, we have developed a standard file
format that we call an annotated file.

Data File Structure
To provide the investigator with the widest possible

territory for exploration, data files should capture as
much of the recorded data and experimental context as
possible. Thus, we have defined data files in terms of
two components: actual data records that reflect attri-
bute values characterizing responses and base-line
properties of experimental units and annotation or com-
ment records that capture the context associated with
the data record and give the files a self explanatory
flavor when viewed. Traditional data records and an-
notation records are distinguished by using a reserved
character in the first position of the record.
Data records are composed of alphanumeric fields of

text separated by white space. Unknown values are
represented by dk (don't know). Among the annotation
records, we include a dictionary record that names each
field of data (e.g., event, peak current (Ipeak), minimum
current (I-min), time to peak (t_min) etc.); frame sep-
arators that separate groups of data records that are
logically related (e.g., different frames reflecting dif-
ferent experimental conditions); and comment records
that can appear anywhere in the file and contain text
that helps the reader visually interpret data in the re-
gion of the comment, as seen in Figure 1.
A formal description of a file is shown in Figure 2,

where each construct is expressed in Backus Normal
Form. The file definition includes that of a classical flat
file so that nonannotated files can be manipulated with
the same ease as annotated files, and it provides back-
ward compatibility with old files. For nonannotated
files, the variables are assumed to be named xl, x2....

Annotated File Access
To manipulate data, estimate model parameters, or

summarize results, it must be easy to access records
from the data file, independent of whether the record
is a data record, dictionary, comment, or frame record.
In order to remove this burden from each analysis pro-
cedure, we have built a small library (RECORDIO) of

File rules
<file>
<frames>
<frame>
<simple frame>
<datablock>
<dataline>

Record rules
<dictionary>
<label>
<comment>
<data>
<separator>
<sep>
<cr>
<fields>
<string>
<char>
<field>
<dk>
<number>
<char-field>
<speciaLstring>

= <simple frame, <dictionary><frames>
:= <frames,<frame, <frame>
: = <label,<simple frame>
:= <dictionary,<datablock, I <datablock,
:= <dataline> <datablock,<dataline, NULL
:= <comment>) <data>

:= $<fields,<cr,
:= :<string><cr>
: = !<string><cr>
: = <separator><fields><cr> <fields><cr>
:= <separator><sep> <sep>
:= space I tab
: = carriage return
:= <field> <fields><separator><field>
:= <char> <string><char>
: = any printable ASCII character
:= <charJield> <number> <dk>
:= dkl ?
= any number recognized by scanf
= "<string>" <speciaLstring>
= a string of printable ASCII characters

that is not exactly "dk", and does not in-
clude space, tab, comma, or question
mark

FIGURE 2. BNF specification of an annotated file. This specification
describes in recursive terms each construct in an annotated file.
The construct <a>: = is read a is defined by b. The construct
<a> is read a or b. The construct <a> is read a and
b. Primitive constructs such as alphanumeric characters are not
enclosed in <>. For instance, file is defined as a simple frame or a
dictionary and frames. A simple frame is defined as a dictionary
and a data block or a data block. A data block is defined as a data
line or a data block and a data line.

file access procedures (Table 1) that can be called by
analysis procedures in order to access data.
We have defined four record types: DATA, COM-

MENT, DICTIONARY, and FRAME. The RECOR-
DIO library of procedures contains modules that either
can return each data record independent of record type
or can read records sequentially and ignore records of
a certain type. As an example of a procedure that re-
turns a record independent of its type

get-record (buffer)

gets the next record from the file, returns the text of
the record in the array, buffer, and returns the record
type as the value of get-record. For numerical proce-
dures, one can use the procedure

get-vector (vector,m)

to read the next DATA record while ignoring any an-
notation records. This procedure gets the next record
of type, DATA, interprets up to m data fields returning
their values in vector[], and returning the number of
fields actually found or End of File as the value of the
function. Thus the C code segment

double vector [MAX];
int m;
while (get-vector (vector, m) ! = EOF)
{

process values in vector[i]
}

7

STARMER AND DIETZ

Table 1. RECORDIO library.

Procedure name Function
get-record (buffer) Gets the next record from the stan-

dard input device, stores as a text
string in buffer, and returns the
record type or end of ifie as the
value of the function.

fget_record (fp,buffer) Same as get-record except input is
specified by fp (a file pointer).

get-fields (fields) Same as get-record except each
field ofthe record is identified and
pointed by an element of the vec-
tor, fields[].

get-vector (values, m) Gets the next DATA record and
stores the value ofeach ofm fields
as elements of the vector, value.
The returned value of get-vector
is the number of fields converted
or end of file.

fget_vector (fp,values,m) Same as get-vector except input is
specified by fp.

sget_vector (buffer,value m) Same as get-vector except the in-
put is contained in the character
string, buffer.

get_vvector (value,valid) Gets the next DATA record and
stores the value of each field in
the vector, value, and stores the
value 1 in the corresponding ele-
ment of valid if the field is nu-
merical and 0 if it is blank speci-
fication, dk.

will read and process each data record, while ignoring
each comment embedded in the file.

If it is important to reproduce the annotation records
in the output data stream, one can use the procedure,
get_record(buffer) to access the next record, and then
if its type is not DATA, print the record, else use sget
_vector(buffer,vector,m) to fetch the data values
from the text string, buffer. Here, the code segment
previously given is modified by reading each record with
get_recordo:

char buffer [LENGTH]
double vector [MAX];
int type,m;
while ((type = get_record(buffer))! = EOF)

switch (type)

{

}

}

COMMENT:
DICTIONARY:
SEPARATOR:

print("%s\n",buffer);
break;

DATA:
sget_vector
(buffer,vector,m);
process values of vector[i]
break;

To select a group of data records that are bounded
by frame separators, we have constructed a procedure,
select "identifying test," that reads each record from a
data ifie. This procedure searches for a frame separator
(indicated by a leading :) followed by the text specified
as identifying text and passes to the output stream all
records until the next frame separator (or End of File)
is encountered. Thus to extract "train 1 Hz" one would
specify (Fig. 3):

select <input.dat "train 1 Hz" process-data

Here the represents the UNIX pipe command, and it
means that the output of the left member is passed as
input to the right member. The < symbol identifies the
input data file.

In addition we have a tool, doall "command string"
that manipulates each frame of data in the same manner
according to the command sequence specified by "com-
mand string." To fit an exponential to the x,y values
represented by the first two fields of each group of rec-
ords (frame) labeled "train" is specified by

select <input.dat "train" doall "tf xl x2 fitexpc"

where tf extracts the first two fields, xl and x2, from
each record and passes the resultant values to a pro-
cedure that fits an exponential using column 1 as the
dependent variable and column 2 as the independent
variable. If fitexpc requires the independent variable
first followed by the dependent variable, one could use
tf to reorder the values, as with tf x2 xl.
For data transformation, we have developed a tool,

tf, that can perform simple data transformations as
specified on the command line. If the input data stream
contains a dictionary record, then the data transfor-
mation is specified using the variables named within the
dictionary record. Files without a dictionary record use
the default names, xl, x2 ... as previously described.
Thus, to access the values of the second and fourth
column of the file, we specify:

tf < filename x2 x4

If the file contains a dictionary as in Figure 1, we would
specify:

tf <subsetdat Ipeak t_min

If one wanted to evaluate an algebraic transformation,
one would specify for example

tf <subset-dat event_new_variable
= Ipeak*sqrt(t_min)

Sometimes the order of variables as they appear in the
data file must be modified. To exchange the positions
of event and Ipeak, one would specify:

tf <subset-dat Ipeak event

Analysis
UNIX and many microcomputer operating systems

such as DOS treat data files and keyboard data in a

8

MANAGING RESEARCH DATA

rm2000% select <subset.dat "train 1 Hz"
$event Ipeak I-min t_min
!Propoxyphene study; 50 ,M concentration 10/12/88b Recovery and
uptake

!protocols. Filter 0 5 0 x 100
!Follower gain = x 2
!Tape 208, speed = 15 ips
!Sampling rate = 20 kHz, 2 channels, 600 points / frame
:train 1 Hz
469 1.21 - .19 0.0009
470 1 - .415 0.0012
471 .865 - .24 0.0009
472 .8275 - .1 0.001
473 .7825 - 0.0475 0.001
474 .795 - 0.0425 0.0009
475 .75 - .2275 0.001
476 .7425 - 0.0475 0.0009
477 .7375 - .2075 0.001
478 .73 - 0.0875 0.001
479 .7325 - .2925 0.001
rm2000% select <subset.dat "train 1 Hz" tf Ipeak
$xl
! tf commands - > Ipeak
! Old Dictionary - > $event Ipeak I-min t_min
!Propoxyphene study; 50 ,M concentration 10/12/88b Recovery and
uptake

!protocols. Filter 0 5 0 x 100
!Follower gain = x 2
!Tape 208, speed = 15 ips
ISampling rate = 20 kHz, 2 channels, 600 points I frame
:train 1 Hz
1.21
1
.865
.8275
.7825
.795
.75
.7425
.7375
.73
.7325
rm2000% select subset.dat "train 1 Hz" tf Ipeak fitexpc -x
n = 11
Exponential curve fit: a + b*exp(- c*x)
Residual std. dev.0.014277
Iterations = 7
a = 0.737361 sd(a) = 0.007028
b = 0.470020 sd(b) = 0.014448
c = 0.583496 sd(c) = 0.041921

x

0.000000
1.00
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
9.000000

y
1.210000
1.000000
0.865000
0.827500
0.782500
0.795000
0.750000
0.742500
0.737500
0.730000

expected(y)
1.207381
0.999606
0.883679
0.818999
0.782910
0.762775
0.751541
0.745273
0.741776
0.739824

FIGURE 3. Partial output an analysis of the data in Figure 1. Here
an exponential was fit to the second column of data (Ipeak) from
the frame labeled "train 1 Hz:' The string, rm2000%, is the prompt
from the computer and the following text is the command line typed
by the user. The text between prompts is computer output. Here,
the process, select, extracted the appropriate frame of data as
illustrated at the top on the figure. This frame then had its second
column extracted by the process, tf, and the resultant data passed
to fitexpc for fitting. The process was initiated by the command
line: select <subset-dat "train 1 Hz" tf Ipeak fitexpc -x".

uniform, device-independent, and interchangeable man-
ner. The transparency of the data source within the
UNIX or the DOS operating environment can be used
very effectively for data analysis. Further, the pipe
command, l, that allows processes to be concatenated
where the output of the first process is treated as input
to a successor process, provides a powerful tool for spec-
ifying an analysis procedure.

Instead of building a large, multifunction program for
data analysis, one can more easily construct an equiv-
alent procedure by using a composition of single-func-
tion analysis tools and specify the composition as a pipe.
This encourages the reuse of single function pieces of
software, since many times the same analysis program
can be used in several different settings. The major
difficulty encountered with this approach is that of sep-
arating experimental data from control data, e.g., the
specification of analysis options. This is because the
analysis program should not be required to know any-
thing about input data formatting. Traditional batch
processing systems often forced one to mix procedure
commands with primary data, thereby forcing the
analysis program to know when to expect data and when
to expect procedure information or analysis options.
Here, we have chosen to separate the primary data
stream from the control data stream by requiring the
specification of analysis options as text on the command
line and only allowing observational (or annotated) data
to flow through the input and output stream. As an
example,

fitexp <input.dat -a 5.0 -c 2.5

requests fitting an exponential of the form y =
a*exp(- c*x) where initial values of a and c are 5.0 and
2.5. Similarly,

linmodel <input.dat -m 3 -0

requests fitting a linear model of three elements (-m
3) to the data in input-dat and to include a mean term
(-0) in the model; i.e., y = ao + a1xl + a2x2. The
command line

linmodel -m 3

fits a model of the form y = aoxo + aix1 + a2x2
The central idea here is to develop statistical analysis

procedures as simple filters where output results are
generated from primary data that is accessed from the
standard input device and control or procedure specific
information that is accessed from the command line.
Using the data ifie access modules listed in Table 1,
individual analysis procedures can be coded that accept
data from annotated ifies. The output of the program
can be in the traditional form of output, or output can
appear with annotation records embedded in the output
data stream.
As an example, we can specify fitting an exponential

to the second column (Ipeak) in the data file illustrated
in Figure 1 where Ipeak is the dependent variable and
the record number (0,1,2 ...) is the independent vari-

9

STARMER AND DIETZ

able. (The independent variable values are generated
by the procedure as requested by the - x option on the
command line.) Using the fitting procedure, fitexpc
which fits functions of the form

y = a + b*exp(-c*x),

the command line appears as
select <subset-dat "train" doall "tf Ipeak fitexpc -x"

which takes data from the file, subset-dat, selects each
frame of records identified by "train" and executes the
command line

tf Ipeak fitexpc - x

for each frame. Here tf extracts the dependent variable
(Ipeak) and pipes the sequence ofvalues to fitexpc which
generates a value of x (record number) for each value
of y (specified by the - x option). The output appears
in Figure 4.

If one is interested in only the estimated values of
the exponential rate (c), they can be extracted by the
UNIX function, grep, (get regular expression, print)
which prints each line of its input that matches the
requested string. Thus, grep "c =" extracts each line
of input containing the string, c =. Figure 4 illustrates
both this command line and the results. Note that the
frame identifiers are reproduced in the output so that
the results are still annotated and easy to interpret.

Discussion
As the capacity and speed of desktop computers has

increased, the rate-limiting step for some data analysis
activities has moved from the machinery to the end
user. It is appropriate then to ask what can be done to
improve the quality of the interface between the inves-
tigator and the primary data, and hopefully achieve
more thoughtful analyses by offering a friendly and flex-
ible analysis environment.
We have identified three areas where the user inter-

face can be significantly improved: readability of data
files, communication between files and analysis proce-
dures, and visualization of each step in an analysis pro-
cedure. To improve readability of files, we have found
that much is gained when all data are represented in a
uniform, unencoded fashion, such as with ASCII text.
Furthermore, we have found that understanding the
data values embedded in a data file is further enhanced
if text comments are embedded in the files such that
the context of the data records is maintained for visual
inspection in the data file. Thus, not only is the file
readable, but one is able to reconstruct a portion of the
experimental protocol from which the data were ac-
quired, removing potential ambiguities associated with
complex data collection protocols.
Communication between data files and programs is

facilitated by using the data stream transparency af-
forded by UNIX and DOS, i.e., data from files and from

rm2000% select <subset.dat "train" doall "tf Ipeak fitexpc - x"
:train .25 Hz
n = 9
Exponential curve fit: a + b*exp(- c*x)
Residual std. dev.0.028383
Iterations = 12
a = 1.173049 sd(a) = 0.014506
b = 0.182521 sd(b) = 0.030171
c = 0.804288 sd(c) = 0.321078

x

0.000000
1.00
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
:train .5 Hz
n = 12

y expected(y)
1.362500 1.355570
1.222500 1.254710
1.245000 1.209584
1.207500 1.189395
1.145000 1.180362
1.177500 1.176321
1.200000 1.174513
1.170000 1.173704
1.157500 1.173342

Exponential curve fit; a + b*exp(- c*x)
Residual std. dev.0.015165
Iterations = 5
a = 0.950815 sd(a) = 0.007584
b = 0.304199 sd(b) = 0.014914
c = 0.490303 sd(c) = 0.056425

x

0.000000
1.000000
2.000000
3.000000
4.000000
5.000000
6.000000

y expected(y)
1.247500 1.255014
1.162500 1.137119
1.050000 1.064915
1.002500 1.020694
1.000000 0.993612
0.985000 0.977025
0.967500 0.966867

rm2000% select <subset.dat "trin" doall "tf Ipeak Ifitexpc -xl grep'c ='"
:train .25 Hz

c = 0.804288 sd(c) = 0.321078
:train .5 Hz
c = 0.490303 sd(c) = 0.056425
:train 1 Hz
c = 0.583496 sd(c) = 0.041921
:train 2 Hz
c = 0.534144 sd(c) = 0.038571

FIGURE 4. Further data extraction. Here the process, doall, fits an
exponential to each frame of data that contains the string "train"
and the UNIX function, grep (get regular expression print) is used
to extract each line of output that contains the text "c =" which
contains the rate constant estimated by the fitting procedure. This
command line provides a batch processing facility when the same
sequence of data manipulation steps is required for each frame.

the keyboard appear the same. Further improvement
results from separating data from control information
required by a particular analysis program. Following
these two ideas, one can create a complex process by
specifying a sequence of primitive processing steps
where the output ofeach elementary process is the input
for its successor process. This approach improves the
reusability of individual processing elements and avoids
the construction oflarge multistep processing programs
that enjoy little reuse.

Finally, we believe much is to be done in the area of

10

MANAGING RESEARCH DATA

visualization of data and analyses. This paper begins to
explore some tools that allow one to display data in
tabular or graphical form and cut and paste segments
that can feed an analysis procedure. It is in this area of
visual analysis that we believe significant progress can

be made in removing insulation that traditionally shields
the investigator from the primary data.

This research was supported in part by grants HL11307 and
HL32994 from the National Institutes of Health and contract 4414804
from the Office of Naval Research.

11

